Email
Newsletters
R&I ONE®
(weekly)
The best articles from around the web and R&I, handpicked by R&I editors.
WORKERSCOMP FORUM
(weekly)
Workers' Comp news and insights as well as columns and features from R&I.
RISK SCENARIOS
(monthly)
Update on new scenarios as well as upcoming Risk Scenarios Live! events.

Innovation

A Renewable Impulse

Swiss Re insures the first solar plane to fly across the United States.
By: | August 1, 2013 • 6 min read
R7_8-13p44-45_05Solar.indd

Every cynic that derides the promise of renewable energy should have a chat with the Swiss pilot, businessman and adventurer Andre Borschberg.

Borschberg, along with his partner and countryman Bertrand Piccard, successfully piloted the first solar plane to fly across the United States in the spring and early summer of 2013. And insurance was there to help make it happen.

Swiss Re Corporate Solutions provided hull insurance, aircraft liability and crew personal accident coverage for the Solar Impulse, a solar-powered plane conceived, engineered and built in Switzerland.

After shorter flights in Europe and North Africa, the entirely solar-powered SolarImpulse_0813plane and its pilots took on the adventure of flying from the west coast to the east coast of the United States in five stages.

The plane, which has two propellers and is self-powered on takeoff, left Mountain View, Calif., on May 3. After stops in Phoenix, Dallas, St. Louis, Cincinnati and Washington, D.C., Solar Impulse arrived in New York on July 6, completing its adventure across America.

The ultimate goal of the project, a primary premise of which is to realize the promise of renewable energy, is an around-the-world flight sometime in 2015.

The insured value of the plane is some $9.17 million, according to its Zurich-based insurer. The total value of the project to date is some $112 million.

HB-SIA, the prototype that is crossing the United States, was not built to fly around the world, but data collected from the flight will be used to construct HB-SIB, the prototype that will be built for the global voyage.

There was no small amount of pressure on Borschberg and Piccard as they took on this cross-country trip. Investments from as many as 80 companies went into the plane, which has a 208-foot-wide wingspan, and yet at 3,527 pounds, weighs only as much as the average car.

The lightness of the plane and its great width require a soft touch at the controls. The pilots must act with deliberation and under no circumstances can they overcorrect.

One of the beauties of recording modern adventures is that, in many cases, a journalist can communicate with the explorer in real time. So it was on June 13, that Risk & Insurance® through its relationship with Swiss Re, was given the opportunity to connect by telephone via satellite with Borschberg as he flew the Solar Impulse from St. Louis to Cincinnati.

Advertisement




“What is interesting about the plane is that you discover a whole new way of flying,” said Borschberg, who despite long hours at the controls of the single-passenger plane sounded relaxed and happy.

The plane is equipped with four brushless motors and is powered by more than 11,500 solar cells on its wingspan and horizontal stabilizer. It cruises at around 40 mph, which gives the pilots plenty of time for reflection.

“This is an airplane where duration is not a problem,” Borschberg said. “Of course, we fly at low speed but we can fly day and night; there are no limits,” he said.

“So time is not an issue anymore and you can enjoy what you do. We are not in a hurry. A day like today is truly an experience. It is a possibility to enjoy each moment and to be present in each moment,” he said.

As he flew on June 13, Borschberg enjoyed good flying conditions, with relatively clear skies and manageable winds. One of the purposes of the United States flight was to test the plane and its support team in different weather conditions.

Earlier, as the team prepared to fly to St. Louis, the convergence of an increasingly volatile climate driven by a warming planet collided with the ambitions of this Swiss project dedicated to the promise of renewable energy.

On May 31, the airplane hangar in St. Louis that had been tapped to serve as the temporary home of HB-SIA was damaged by a tornado. The Solar Impulse team adjusted, inflating a temporary hangar that stored the plane snugly.

“That was one of the goals of the flight here across America … to be exposed to different weather systems, different conditions, from the ones that we experienced in Europe and North Africa already, so that was part of the training,” Borschberg said.

The team behind this record-breaking flight is an impressive and well-qualified one. Borschberg served as a Swiss fighter pilot for more than 20 years. In addition, he earned a Master’s in Management Science from the Sloan School at
MIT and has been involved in numerous aviation start-ups.

Piccard, who comes from a family of scientists and adventurers, gained fame as the winner of the Chrysler Challenge, the first transatlantic balloon race in 1992. He built on that feat by being the first person to pilot a balloon around the world in 1999. Piccard, chairman of the Solar Impulse project, began thinking about a solar-powered plane in 2003, but he needed a lot of help to see his dream realized.

Major corporate partners on the project are Frankfurt, Germany-based Deutsche Bank, the Belgian chemical company Solvay S.A., Swiss watchmaker Omega S.A. and the Swiss elevator maker Schindler.

Additional corporate partners include Swiss Re, Bayer, Swisscom and Altran, but there are more than 80 companies associated with the project. That’s in addition to a team of scientists and engineers based at the École Polytechnique Fédérale de Lausanne in Switzerland.

Advertisement




Apart from the tornado that trounced the hangar in St. Louis, the trip across the United States was an unqualified success.

“Touch wood, cross my fingers but the airplane is doing great,” Borschberg said.

“The solar technology is something which is fully reliable. You cannot wear this out … it lasts,” he said.

“Electric motors also have few moving parts, so that is a big, big advantage. They function at low temperatures, so you don’t have the thermal shock that you have with other technologies.”

In its brief life, Solar Impulse already possesses several aeronautical records for a solar plane, including an absolute height of 30,300 feet and duration of flight at 26 hours, 10 minutes and 19 seconds.

Both Borschberg and Piccard are well-seasoned pilots, which is an advantage because the physical demands of flying Solar Impulse are considerable.

The plane can only carry one person, so there is no one to relieve the pilot, even as he stays at the controls for 24 hours or more at a time.

For Borschberg, the sheer joy, not only of flying itself but of being a pilot on this particular project are more than enough to carry him along.

“Of course Bertrand and myself, we are really passionate about the work we are doing. We are passionate about flying and when you truly like what you are doing, you have a different kind of energy,” he said.

“Second, we are carried by the potential of this airplane and also by the ideal that is around that,” he said.

“I think the other part, of course, is that flying is a wonderful way to look at the earth and see the beauty of it. And so when you fly, you are captivated by that.

“It can be by day, it can be by night. It can be at sunset, it can be at sunrise, so all of this makes the trip truly memorable.”

Dan Reynolds is editor-in-chief of Risk & Insurance. He can be reached at dreynolds@lrp.com.
Share this article:

Black Swan

Raining Down Destruction

NYC asteroid strike would cause nearly 100% fatalities at ground zero.
By: | August 1, 2013 • 8 min read
R7_8-13p20-22_01Asteriod4.indd

When the asteroid strikes earth’s atmosphere, it is traveling at approximately 56,000 mph. At 50 meters to 60 meters wide, it is not large enough to wipe out humanity or irrevocably alter the tilt of the Earth’s axis or its orbit. But it’s going to do plenty of damage, particularly because of where it is headed: right at New York City. The asteroid, made of rock not too dissimilar from the rocks found on Earth, begins to break up nearly 200,000 feet in the atmosphere. About three miles up, or 18,800 feet, the projectile bursts into a cloud of fragments.

When it does that, it releases the power of 1,000 A-bombs — 10 megatons of TNT.

On the ground, the sound of the explosion reaches 105 decibels, enough to cause people to cover their ears in pain. That is, if the explosion’s incendiary heat and blast wave with its 500 mph winds don’t reach them first.

For residents of the metro area about 25 miles from the detonation site, the fireball looks like a second sun in the sky. The pressure from the explosion reaches them with 70 mph winds, though, wreaking havoc with homes and small business structures.

For about 19 miles surrounding the blast site, the fireball inflicts third-degree burns and ignites clothes.

Advertisement




Within 10 miles — reaching into the Bronx to the northeast, Brooklyn to the south and into Queens to the west — the blast wave reaches even higher pressure. That level of pressure is enough to generate wind speeds of a Cat-5 hurricane, strong enough to raze or severely damage factories, offices and residences.

The air is filled with glass, bricks and jagged concrete, and those half of the Outer Borough residents who do not die are surely injured.

For those within 2.5 miles of the blast, the news is worse. About 17.6 seconds after the explosion, come those 500+ mph winds — arriving faster than the speed of sound. The effects of this phenomenon are not for the faint of heart to consider, but take the worst tornado stories imaginable, multiply by two, and overlay them across almost all of Manhattan.

The force tears already scorched flesh off bones and limbs from bodies. Windows and walls of buildings implode. Multistory, reinforced concrete buildings collapse. Nothing is left of wood frame buildings. Highway truss bridges collapse. Nearly every tree in Central Park is leveled. And what falls down become missiles that kill and maim.

Perhaps luckiest are those closest to ground zero. Within the first second of the detonation, the heat energy within a mile turns flesh into steam, clean to the bone. Assume near total demolition at ground zero with fatalities as good as 100 percent.

07_08_13_AsteroidChart

The Fallout

Research for creating this description included information from the Earth Impacts Effect Program sponsored by the Imperial College London and Purdue University, It also used research provided by the Nuclear Weapon Archive. In its scale and effects, an asteroid impact would be similar to a fusion bomb.

But the most relevant source for the above scenario was a research report published in 2009 by RMS, the catastrophe modeling solutions provider.

The RMS report explored a 1908 event, the Tunguska asteroid impact in Russia at its 100th anniversary. In that strike, a mid-size asteroid (about 50 meters in diameter) exploded 3 to 5 miles above the Siberian forest. It leveled trees across 770 miles, and the pressure waves generated were measurable around the world.

Eyewitnesses were few and far between, but the few recorded for history including one person who experienced the event from 40 miles out and said, “at that moment, I became so hot that I couldn’t bear it, as if my shirt was on fire.”

The modeler asked: What if this occurred above New York City?

To calculate the probable maximum loss, RMS placed the proposed Tunguska damage footprint over Manhattan. It assumed a mean damage ratio, fatality rate and injury rate within the inner footprint of destruction to be 70 percent, 50 percent and 40 percent, respectively. In the outer footprint, they were 30 percent, 2 percent and 35 percent, respectively.

Then, RMS populated its map of Manhattan with datasets for population concentrations and insured assets. As much as $760 billion in property exposure and 3.61 million people exist within the outer swath of destruction, and with the inner ring of fire and death, $1.38 trillion and 6.25 million people.

Advertisement




According to RMS calculations, that translated to property losses of $1.19 trillion, 3.2 million deaths and 3.76 million injuries.

Such a biblical tally — and indeed, an asteroid impact may have caused the flood behind Noah’s ark — leads us to a question: Would property insurance companies even have to pay such a massive bill?

When a meteor exploded over Chelyabinsk, Russia, on Feb. 15, 2013, this question was raised. Michael Barry, vice president for media relations at the Insurance Information Institute, was quoted in Time.com as saying, at least with homeowners policies, “it’s got to be a direct hit” to trigger coverage. If an asteroid were to explode miles in the air and level everything below it, “the coverage is going to be open to interpretation.”

RMS conceded in its report that “it is unclear if, on any current contractual grounds, insurers would exclude damage caused by such a peril.”

Yet, the consensus appears to be that comprehensive commercial multiperil and all-risk policies ought to cover damage from an asteroid blast, unless specifically excluded.

“Generally, losses from the impact of meteorites or asteroids are covered in standard insurance policies. However, differences do exist from country to country,” was the simple statement put out by Munich Re after Chelyabinsk.

The Recovery

In Earth’s history, larger strikes have happened. The dinosaurs were made extinct by an asteroid that could be measures in kilometers, not meters.

If that were the case, “it’s a whole new world the next day,” said Lou Gritzo, vice president of research at insurer FM Global. It’s literally a whole new world.

That sort of impact would extend beyond the affected region and country, and have geopolitical security implications. Countries might cease to exist, let alone insurance companies.

A Tunguska-sized space rock could have ripple effects beyond the New York region, given the “brittle” economic situation in today’s over-connected financial and business worlds, Gritzo said. The word he used to describe such a threat is “reset” — to geopolitical and economic systems, but also to the well-being and daily lives of people on the East Coast and the insurance industry.

After a significant event like this, the insurance industry would be “really in ‘only the strong survive’ mode,” Gritzo said.

We can’t define “the strong” as those specifically prepared for an asteroid strike. As Robert Muir-Wood, chief research officer at RMS, explained, no one on the insurance side has a strategy to handle such an event at the moment.

Nor should they. It’s not practical to chase every Black Swan that flies under the sun.

If you’re running an insurance or reinsurance company, said Muir-Wood, you have to decide what is the risk threshold that you’re worried about and manage to that risk, so you will survive.

Advertisement




“Generally,” said Hélène Galy, head of proprietary modeling, managing director, Global Analytics, at Willis and the Willis Research Network, “when we provide catastrophe modeling results to clients, for example for a flood model, they are more interested in the low return periods, which should match their recent loss experience. Typical return periods are 100 year and 250 year.”

Gritzo at FM Global said that company underwrites to the 500-year risk level and advises its clients to protect their own properties to that 0.2 percent annual probability.

The odds of a Tunguska-like event striking a major urban area — let alone the major urban area in the United States — are very high.

The frequency of rocks this size hitting Earth in any one place, however, could fit within this 500-year window. According to the Asteroid Terrestrial-impact Last Alert System (ATLAS) at the Institute for Astronomy at the University of Hawaii — its purpose: to identify these rocks before they hit — “city killer” sized asteroids arrive once every few hundred years.

Given that location uncertainty but surety of occurrence, standard rules of catastrophe management apply for reinsurers and insurers. Prepare for the disaster that really scares you, and likely you will be relatively prepared when another disaster strikes.

One such rule of the “only the strong shall survive” school of thinking is diversity — away from insurance lines like property and away from concentrations of underwriting in any particular urban area or region.

“In this extreme scenario, losses would be so regional and total that a number of regional insurers would probably disappear. Reinsurers with enough diversification should survive,” said Galy.

She added, “insured losses would be dwarfed by economic losses, so it is the economy and civil society that would be most impacted.”

It would be a “reset” unlike anything we have seen.

“It would look a bit of a mess,” said Muir-Wood. The nearest historical equivalent would be the Tokyo earthquake in 1923, when the city burned and total insured losses were beyond insurance coverage.

The government then allowed insurers to pay back as much as they could without going under. In that way, it could be comparable to another recent Black Swan — the 2007-2008 financial crisis.

As long as it is still standing, the U.S. government would not sit by and let all the big insurance companies disappear, like the dinosaurs did.

Matthew Brodsky is editor of Wharton Magazine. He can be reached at riskletters@lrp.com.
Share this article:

Sponsored Content by ACE Group

5 & 5: Rewards and Risks of Cloud Computing

As cloud computing threats loom, it's important to understand the benefits and risks.
By: | June 2, 2014 • 4 min read
SponsoredContent_ACE

Cloud computing lowers costs, increases capacity and provides security that companies would be hard-pressed to deliver on their own. Utilizing the cloud allows companies to “rent” hardware and software as a service and store data on a series of servers with unlimited availability and space. But the risks loom large, such as unforgiving contracts, hidden fees and sophisticated criminal attacks.

ACE’s recently published whitepaper, “Cloud Computing: Is Your Company Weighing Both Benefits and Risks?”, focuses on educating risk managers about the risks and rewards of this ever-evolving technology. Key issues raised in the paper include:

5 benefits of cloud computing

1. Lower infrastructure costs
The days of investing in standalone servers are over. For far less investment, a company can store data in the cloud with much greater capacity. Cloud technology reduces or eliminates management costs associated with IT personnel, data storage and real estate. Cloud providers can also absorb the expenses of software upgrades, hardware upgrades and the replacement of obsolete network and security devices.

2. Capacity when you need it … not when you don’t
Cloud computing enables businesses to ramp up their capacity during peak times, then ramp back down during the year, rather than wastefully buying capacity they don’t need. Take the retail sector, for example. During the holiday season, online traffic increases substantially as consumers shop for gifts. Now, companies in the retail sector can pay for the capacity they need only when they need it.

SponsoredContent_ACE

3. Security and speed increase
Cloud providers invest big dollars in securing data with the latest technology — striving for cutting-edge speed and security. In fact, they provide redundancy data that’s replicated and encrypted so it can be delivered quickly and securely. Companies that utilize the cloud would find it difficult to get such results on their own.

4. Anything, anytime, anywhere
With cloud technology, companies can access data from anywhere, at any time. Take Dropbox for example. Its popularity has grown because people want to share large files that exceed the capacity of their email inboxes. Now it’s expanded the way we share data. As time goes on, other cloud companies will surely be looking to improve upon that technology.

5. Regulatory compliance comes more easily
The data security and technology that regulators require typically come standard from cloud providers. They routinely test their networks and systems. They provide data backups and power redundancy. Some even overtly assist customers with regulatory compliance such as the Health Insurance Portability and Accountability Act (HIPAA) or Payment Card Industry Data Security Standard (PCI DSS).

SponsoredContent_ACE5 risks of cloud computing

1. Cloud contracts are unforgiving
Typically, risk managers and legal departments create contracts that mitigate losses caused by service providers. But cloud providers decline such stringent contracts, saying they hinder their ability to keep prices down. Instead, cloud contracts don’t include traditional indemnification or limitations of liability, particularly pertaining to privacy and data security. If a cloud provider suffers a data breach of customer information or sustains a network outage, risk managers are less likely to have the same contractual protection they are accustomed to seeing from traditional service providers.

2. Control is lost
In the cloud, companies are often forced to give up control of data and network availability. This can make staying compliant with regulations a challenge. For example cloud providers use data warehouses located in multiple jurisdictions, often transferring data across servers globally. While a company would be compliant in one location, it could be non-compliant when that data is transferred to a different location — and worst of all, the company may have no idea that it even happened.

3. High-level security threats loom
Higher levels of security attract sophisticated hackers. While a data thief may not be interested in your company’s information by itself, a large collection of data is a prime target. Advanced Persistent Threat (APT) attacks by highly skilled criminals continue to increase — putting your data at increased risk.

SponsoredContent_ACE

4. Hidden costs can hurt
Nobody can dispute the up-front cost savings provided by the cloud. But moving from one cloud to another can be expensive. Plus, one cloud is often not enough because of congestion and outages. More cloud providers equals more cost. Also, regulatory compliance again becomes a challenge since you can never outsource the risk to a third party. That leaves the burden of conducting vendor due diligence in a company’s hands.

5. Data security is actually your responsibility
Yes, security in the cloud is often more sophisticated than what a company can provide on its own. However, many organizations fail to realize that it’s their responsibility to secure their data before sending it to the cloud. In fact, cloud providers often won’t ensure the security of the data in their clouds and, legally, most jurisdictions hold the data owner accountable for security.

The takeaway

Risk managers can’t just take cloud computing at face value. Yes, it’s a great alternative for cost, speed and security, but hidden fees and unexpected threats can make utilization much riskier than anticipated.

Managing the risks requires a deeper understanding of the technology, careful due diligence and constant vigilance — and ACE can help guide an organization through the process.

To learn more about how to manage cloud risks, read the ACE whitepaper: Cloud Computing: Is Your Company Weighing Both Benefits and Risks?

This article was produced by ACE Group and not the Risk & Insurance® editorial team.


With operations in 54 countries, ACE Group is one of the largest multiline property and casualty insurance companies in the world.
Share this article: